metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Furfurylammonium chloridozincophosphate

Kamel Kaabi,^a Meher El Glaoui,^a Erwann Jeanneau,^b Frederic Lefebvre^c and Cherif Ben Nasr^a*

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, ^bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and ^cLaboratoire de Chimie Organometallique de Surface (LCOMS), Ecole Superieure de Chimie Physique Electronique, 69622 Villeurbanne Cedex, France Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 7 July 2010; accepted 28 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.025; wR factor = 0.042; data-to-parameter ratio = 19.0.

In the title compound, $[ZnCl(HPO_4)](C_5H_8NO)$, polymeric inorganic layers constructed from ZnO₃Cl and PO₄ tetrahedra are linked by O atoms: O-H···O hydrogen bonds occur within the layers. The organic cations occupy the interlayer regions and interact with the layers by way of N-H···O, N-H···Cl, and C-H···Cl hydrogen bonds.

Related literature

For related zincophosphate materials, see: Gier & Stucky (1991); Harrison & Phillips (1997). For a discussion of Zn-O and P-O distances, see: Rayes *et al.* (2001); Kefi *et al.* (2007). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data [ZnCl(HPO₄)](C₅H₈NO) $M_r = 294.94$ Monoclinic, $P2_1/c$ a = 12.7588 (4) Å b = 9.6339 (2) Å c = 8.6281 (2) Å $\beta = 106.233$ (3)°

Data collection

Oxford Diffraction Xcalibur Eos Nova diffractometer Absorption correction: analytical (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\rm min} = 0.488, T_{\rm max} = 0.806$ 7978 measured reflections $V = 1018.26 (5) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 2.83 mm^{-1} T = 293 K 0.36 \times 0.15 \times 0.08 mm

2409 independent reflections 1997 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.024$ 2 standard reflections every 400 reflections intensity decay: 4%

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.025 & 127 \text{ parameters} \\ wR(F^2) &= 0.042 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} = 0.54 \text{ e } \text{ Å}^{-3} \\ 2409 \text{ reflections} & \Delta\rho_{\text{min}} = -0.55 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

$Zn1-O3^{i}$	1.9637 (16)	P1-O1	1.5150 (18)
Zn1–O2 ⁱⁱ	1.9368 (16)	P1-O2	1.5218 (17)
Zn1-Cl1	2.2161 (8)	P1-O3	1.5187 (16)
Zn1-O1	1.9416 (16)	P1-O4	1.5699 (17)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x, -y, -z + 1.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$04-H1\cdots O2^{i}$ $N1-H4\cdots O1$ $N1-H3\cdots O3^{iv}$ $N1-H2\cdots C11^{iii}$	0.80 0.89 0.91 0.92	1.91 2.28 1.99 2.35	2.709 (2) 3.051 (6) 2.896 (6) 3.234 (3)	177 145 172 161
$C5 - H9 \cdots Cl1$	0.96	2.87	3.640 (3)	138

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2290).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Gier, T. E. & Stucky, G. D. (1991). Nature (London), 349, 508-510.
- Harrison, W. T. A. & Phillips, M. L. F. (1997). Chem. Mater. 9, 1837-1846.
- Kefi, R., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 288–298.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Rayes, A., Ben Nasr, C. & Rzaigui, M. (2001). *Mater. Res. Bull.* **36**, 2229–2239. Watkin, D. (1994). *Acta Cryst.* **A50**, 411–437.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. supplementary materials

Acta Cryst. (2010). E66, m1046 [doi:10.1107/S1600536810029995]

Furfurylammonium chloridozincophosphate

K. Kaabi, M. El Glaoui, E. Jeanneau, F. Lefebvre and C. Ben Nasr

Comment

Recently, zincophosphates with monomeric phases, chains, layers and three-dimensional open framework have been prepared in the presence of different amines, alkali metal cations or metal complexes as structure directing agent (Gier and Stucky, 1991; Harrison and Phillips, 1997). We report here the crystal structure of one such compound, $Zn(HPO_4)ClC_5H_5ONH_3$ (I), (Fig. 1). The atomic arrangement of the title compound consists of corrugated anionic layers of formula $[Zn(HPO_4)Cl]_n^n$ parallel to (b, c) plane. Charge neutrality is achieved by, the presence of protonated furfurylamine templete cation trapped in the inter-layer spacing (Fig. 2). Both zinc and phosphorus atoms are tetrahedrally coordinated. The

templete cation trapped in the inter-layer spacing (Fig. 2). Both zinc and phosphorus atoms are tetrahedrally coordinated. The zinc atom is connected by three phosphate groups and has one terminal Zn—Cl vertex. On the other hand, each phosphorus atom is bonded to three Zn atoms through three oxygen atoms with the forth coordination site being a terminal P—OH group. The topology of the zincophosphate connectivity pattern is shown in Fig. 3.

The ZnO₃Cl and PO₄ groups in Zn(HPO₄)ClC₅H₅ONH₃ fuse together *via* Zn—O—P bridges lead to a two-dimensional network. The resulting infinite anionic layers parallel to (b, c) plane are situated at x = 0. These layers are arranged in such away as to create two kinds of pores. The first one, built up from four-membered [Zn₂P₂] rings (presents an approximate dimensions 4.426×3.911 Å) and the second one formed by eight-membered [Zn₄P₄] rings (exhibits as approximate dimensions 9.571×3.376 Å)) This inorganic framework, with a 4.8^2 topology, is closely similar to that of Zn(HPO₄)ClC₅H₁₂N [24]. However, these second pores are not completely accessible due to the presence of P—OH groups extending into them, thereby blocking the entry to pores (Fig. 2). In the [Zn(HPO₄)Cl]_nⁿ layers, the bond-length values (Zn—O (mean= 1.947 (2) Å, Zn—Cl = 2.216 (1) Å and P—O(mean) = 1.531 (2) Å) are close to those observed in other zincophosphate containing similar polyhedron Zn(HPO₄)ClC₅H₁₂N (Rayes *et al.*, 2001) and Zn(HPO₄)ClC₄H₁₀NO (Kefi *et al.*, 2007). Among the four distinct oxygen of the PO₃OH) unit, three are bonded with Zn atoms, while the other has a significantly longer bond length (P—O = 1.570 (2) Å) suggesting that oxygen O(1) is an hydroxyl group atom. Hydrogen bonds plays an important role in stabilizing the Zn(HPO₄)ClC₅H₅ONH₃ structure. Furfurylaminium cations interact with zincophosphate layers through N—H···O and N—H···Cl hydrogen bonds. Inside layers, the P—O—H groups are interconnected *via* O—H···O hydrogen bonds (Fig. 3).

Experimental

The title compound $Zn(HPO_4)ClC_5H_5ONH_3$ was prepared at room temperature by adding 5.8 g (50 mmol) of orthophosphoric acid (85 weight % from Fluka) to a solution of 4.8 g of furfurylamine (50 mmol)(Acros) in 60 ml of water. To this mixture, we added, drop by drop, an aqueous solution of 6.8 g (50 mmol) of zinc chloride (Prolabo) under continuous stirring. A white precipitate was formed which completely dissolved by adding phosphoric acid. The obtained solution was slowly evaporated at room temperature until the formation of needle colorless crystals of the title compound (yield 53%).

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. For the disordered perchlorate anions, only major parts are shown. Dashed lines denote hydrogen bonds. [Symmetry codes: (b) -x, -y, 1-z; (d) x, 1/2-y, 1/2+z]

Fig. 2. Polyhedral representation of the framework $Zn(HPO_4)ClC_5H_5ONH_3$, viewed the a direction.

Fig. 3. Projection of $Zn(HPO_4)ClC_5H_5ONH_3$ structure in the plane (a, c). The hydrogen bonds are denoted by dotted lines.

Furfurylammonium chloridozincophosphate

Crystal data
[ZnCl(HPO ₄)](C ₅ H ₈ NO)
$M_r = 294.94$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 12.7588 (4) Å
<i>b</i> = 9.6339 (2) Å
<i>c</i> = 8.6281 (2) Å
$\beta = 106.233 \ (3)^{\circ}$
$V = 1018.26 (5) \text{ Å}^3$
Z = 4

F(000) = 592 $D_x = 1.924 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6031 reflections $\theta = 2.5-29.1^{\circ}$ $\mu = 2.83 \text{ mm}^{-1}$ T = 293 KNeedle, colorless $0.36 \times 0.15 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Eos Nova diffractometer	1997 reflections with $I > 2.0\sigma(I)$
Radiation source: Mova (Mo) X-ray Source	$R_{\rm int} = 0.024$
mirror	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: analytical (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -12 \rightarrow 11$
$T_{\min} = 0.488, T_{\max} = 0.806$	$l = -11 \rightarrow 11$
7978 measured reflections	2 standard reflections every 400 reflections
2409 independent reflections	intensity decay: 4%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.025$	Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) - A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed be- low and $x = F/F$ max Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sig- maF) ²] ² A_i are: 0.105E + 04 0.146E + 04 711. 140 26.6
$wR(F^2) = 0.042$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{\text{max}} = 0.54 \text{ e } \text{\AA}^{-3}$
2409 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$
127 parameters	Extinction correction: Larson (1970), Equation 22
0 restraints	Extinction coefficient: 0.000
Primary atom site location: structure-invariant direct methods	

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Fractional atomic coordinates and isotr	opic or equivalent isotro	opic displacement	parameters $(Å^2)$
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.09697 (2)	0.06480 (3)	0.74519 (3)	0.0229

supplementary materials

C11	0.26982 (6)	0.09461 (9)	0.88474 (10)	0.0500
01	0.07464 (14)	0.17891 (18)	0.5532 (2)	0.0311
P1	-0.02439 (5)	0.22912 (6)	0.42328 (7)	0.0209
O2	-0.05740 (16)	0.12965 (16)	0.28087 (19)	0.0333
O3	-0.00551 (14)	0.37260 (16)	0.36327 (19)	0.0258
O4	-0.12558 (14)	0.23883 (19)	0.4926 (2)	0.0307
O5	0.4270 (2)	0.5428 (4)	0.7914 (3)	0.0841
C1	0.3492 (2)	0.5791 (3)	0.8597 (3)	0.0405
C2	0.3614 (3)	0.7099 (4)	0.9043 (5)	0.0698
C3	0.4544 (4)	0.7592 (6)	0.8687 (6)	0.0941
C4	0.4910 (4)	0.6607 (7)	0.8001 (5)	0.0998
C5	0.2697 (3)	0.4722 (3)	0.8692 (4)	0.0518
N1	0.19146 (18)	0.4419 (3)	0.7080 (3)	0.0436
H1	-0.1048	0.2746	0.5792	0.0473*
H2	0.2282	0.4435	0.6304	0.0669*
H3	0.1376	0.5071	0.6866	0.0666*
H4	0.1624	0.3575	0.7093	0.0668*
Н5	0.3184	0.7576	0.9503	0.0857*
H6	0.4834	0.8469	0.8901	0.1143*
H7	0.5500	0.6638	0.7591	0.1243*
H8	0.2309	0.4976	0.9458	0.0636*
Н9	0.3096	0.3879	0.9034	0.0635*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03217 (15)	0.01510 (12)	0.02197 (13)	-0.00057 (12)	0.00852 (11)	0.00072 (11)
Cl1	0.0318 (4)	0.0606 (5)	0.0526 (4)	-0.0051 (4)	0.0034 (3)	0.0016 (4)
01	0.0349 (10)	0.0312 (10)	0.0282 (9)	0.0045 (8)	0.0107 (8)	0.0126 (8)
P1	0.0343 (3)	0.0148 (3)	0.0160 (3)	-0.0006 (2)	0.0111 (2)	0.0004 (2)
O2	0.0672 (14)	0.0159 (8)	0.0209 (8)	-0.0060 (8)	0.0189 (9)	-0.0030(7)
O3	0.0410 (10)	0.0161 (8)	0.0234 (8)	-0.0004 (7)	0.0143 (7)	0.0020 (6)
O4	0.0341 (10)	0.0373 (10)	0.0239 (8)	-0.0036 (8)	0.0135 (8)	-0.0039 (8)
O5	0.0689 (19)	0.109 (2)	0.086 (2)	-0.0059 (18)	0.0394 (16)	-0.0313 (19)
N1	0.0384 (13)	0.0287 (12)	0.0622 (16)	-0.0040 (11)	0.0115 (12)	-0.0030 (12)
C1	0.0363 (15)	0.0487 (18)	0.0349 (14)	-0.0017 (14)	0.0073 (12)	-0.0030 (14)
C2	0.063 (2)	0.051 (2)	0.101 (3)	-0.0071 (19)	0.032 (2)	-0.020 (2)
C3	0.085 (4)	0.090 (4)	0.101 (4)	-0.047 (3)	0.015 (3)	-0.004 (3)
C4	0.051 (3)	0.183 (6)	0.070 (3)	-0.042 (3)	0.024 (2)	-0.007 (4)
C5	0.062 (2)	0.0439 (19)	0.0475 (18)	-0.0063 (16)	0.0113 (16)	0.0055 (15)

Geometric parameters (Å, °)

Zn1—O3 ⁱ	1.9637 (16)	C1—C2	1.315 (5)
Zn1—O2 ⁱⁱ	1.9368 (16)	C5—N1	1.497 (4)
Zn1—Cl1	2.2161 (8)	С5—Н9	0.960
Zn1—O1	1.9416 (16)	С5—Н8	0.961
O1—P1	1.5150 (18)	N1—H4	0.895

P1—O2	1.5218 (17)	N1—H3	0.911
P1—O3	1.5187 (16)	N1—H2	0.918
P1—O4	1.5699 (17)	C2—C3	1.390 (5)
O4—H1	0.798	С2—Н5	0.889
O5—C1	1.336 (4)	C3—C4	1.274 (7)
O5—C4	1.389 (6)	С3—Н6	0.920
C1—C5	1.463 (4)	С4—Н7	0.917
O3 ⁱ —Zn1—O2 ⁱⁱ	99.65 (7)	C1—C5—H9	107.2
O3 ⁱ —Zn1—Cl1	112.59 (6)	N1—C5—H9	106.2
O2 ⁱⁱ —Zn1—Cl1	112.08 (6)	С1—С5—Н8	110.9
O3 ⁱ —Zn1—O1	107.97 (7)	N1—C5—H8	110.6
O2 ⁱⁱ —Zn1—O1	118.51 (7)	Н9—С5—Н8	109.6
Cl1—Zn1—O1	106.05 (6)	C5—N1—H4	109.6
Zn1—O1—P1	134.84 (11)	C5—N1—H3	108.8
O1—P1—O2	112.44 (11)	H4—N1—H3	109.7
O1—P1—O3	111.34 (10)	C5—N1—H2	109.3
O2—P1—O3	109.41 (9)	H4—N1—H2	108.8
O1—P1—O4	109.99 (10)	H3—N1—H2	110.5
O2—P1—O4	105.88 (10)	C1—C2—C3	107.6 (4)
O3—P1—O4	107.53 (10)	C1—C2—H5	126.1
Zn1 ⁱⁱ —O2—P1	135.00 (10)	С3—С2—Н5	126.4
Zn1 ⁱⁱⁱ —O3—P1	130.43 (10)	C2—C3—C4	107.2 (4)
P1-04-H1	106.8	С2—С3—Н6	126.1
C1—O5—C4	105.1 (3)	С4—С3—Н6	126.7
O5—C1—C5	117.0 (3)	O5—C4—C3	110.4 (4)
O5—C1—C2	109.8 (3)	O5—C4—H7	122.6
C5—C1—C2	133.3 (3)	C3—C4—H7	127.1
C1—C5—N1	112.2 (2)		

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*, -*y*, -*z*+1; (iii) *x*, -*y*+1/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
O4—H1···O2 ⁱ	0.80	1.91	2.709 (2)	177
N1—H4…O1	0.89	2.28	3.051 (6)	145
N1—H3···O3 ^{iv}	0.91	1.99	2.896 (6)	172
N1—H2···Cl1 ⁱⁱⁱ	0.92	2.35	3.234 (3)	161
С5—Н9…Сl1	0.96	2.87	3.640 (3)	138
	. 1 () . 1/0	1 /2		

Symmetry codes: (i) x, -y+1/2, z+1/2; (iv) -x, -y+1, -z+1; (iii) x, -y+1/2, z-1/2.

Fig. 2

